TRAM RAILWAY LINE
Un rail est une barre d’acier profilée. Deux files parallèles de rails mis bout à bout forment une voie ferrée. Ils reposent alors généralement sur des traverses pour conserver un écartement constant. Les rails servent à la fois de guide et de support de roulement pour les véhicules. Étant conducteurs électriques, ils peuvent aussi être utilisés pour la transmission de signaux (circuits de voie) et pour le retour des courants de traction et des auxiliaires du train (ligne train pour le chauffage et la climatisation sur les rames tractées). Un système de transport fondé sur l’utilisation d’un seul rail est un monorail. Un (voire deux) rail(s) peut(peuvent) servir aussi à l’alimentation électrique (alimentation par troisième rail ou par troisième et quatrième rails).
Histoire
A Milan ou dans les docks de Londres, l'utilisation de bandes de roulements, composées de deux files parallèles de dalles en pierres ou de madriers de bois, a été une alternative au pavage complet des chaussées pour diminuer la résistance au roulement des chariots. Au départ les bandes étaient suffisamment larges pour qu'on puisse y maintenir manuellement les véhicules. Pour pouvoir utiliser des bandes plus fines, d'abord des solives en bois puis des rails en acier, il a fallu trouver un moyen de guidage du chariot sur ces rails. Au début du chemin de fer, le système actuel à rail saillant (edge-rails) a été en concurrence avec une technologie de voie à ornières ou rail plat (tramroad ou plateway). Dans ce dernier système, le guide latéral qui permet de s'assurer que la roue reste en position sur le rail n'est pas situé sur la jante mais sur le côté du rail. Le rail plat, plus près du sol et donc plus stable, était moins onéreux à poser et on espérait pouvoir y faire circuler les chariots routiers. Il a été notamment utilisé dans les mines du pays de Galles, mais l'usage a montré qu'il était beaucoup plus sujet à l'encrassement par les dépôts de boue et son usage a été abandonné.
Types
Le rail moderne est généralement du type «Vignole» ; dans une section transversale, on distingue le patin qui s’appuie sur la traverse, le champignon qui constitue le chemin de roulement, et l’âme, filet vertical qui relie le champignon au patin. Sur les lignes importantes, la masse linéique standard du rail est de 60 kg/m.
Des rails à gorge (type «Broca») sont utilisés pour les voies encastrées dans des chaussées routières, notamment pour les installations industrielles et les lignes de tramway.
Le rail à « double champignon symétrique » avait été conçu pour permettre de retourner le rail usé et donc doubler sa durée de vie. Le défaut de ce système était que lorsque le rail était retourné, il était déjà abimé (poinçonnements dû à l'écrasement au niveau des berceaux). Ce principe a été abandonné. Des rails type « double champignon asymétrique » ont également été employés : un seul côté, de plus forte section, était utilisé pour le roulement. La simplification apportée par la fixation du rail type Vignole a amené à l'abandon de ce système.
---------------------------------------------
The rail profile is the cross sectional shape of a railway rail, perpendicular to the length of the rail.
Early rails were made of wood, cast iron or wrought iron. All modern rails are hot rolled steel of a specific cross sectional profile. Typically the cross section (profile) approximates to an I-beam but is asymmetric about a horizontal axis (however see grooved rail below). The head is profiled to resist wear and to give a good ride, the foot is profiled to suit the fixing system.
Unlike some other uses of iron and steel, railway rails are subject to very high stresses and have to be made of very high quality steel. It took many decades to improve the quality of the materials, including the change from iron to steel. Minor flaws in the steel that pose no problems in reinforcing rods for buildings can, however, lead to broken rails and dangerous derailments when used on railway tracks.
By and large, the heavier the rails and the rest of the trackwork, the heavier and faster the trains these tracks can carry.
The rails represent a substantial fraction of the cost of a railway line. Only a small number of rail sizes are made by steelworks at one time, so a railway must choose the nearest suitable size. Worn, heavy rail from a mainline is often reclaimed and downgraded for re-use on a branchline, siding or yard.
History
Early rails were used on horse drawn wagonways, originally with wooden rails, but from the 1760s using strap-iron rails, which consisted of thin strips of cast iron fixed onto wooden rails. These rails were too fragile to carry heavy loads, but because the initial construction cost was less, this method was sometimes used to quickly build an inexpensive rail line. Strap rails sometimes separated from the wooden base and speared into the floor of the carriages above, creating what was referred to as a "snake head". However, the long-term expense involved in frequent maintenance outweighed any savings.
These were superseded by cast iron rails that were flanged (i.e. 'L' shaped) and with the wagon wheels flat. An early proponent of this design was Benjamin Outram. His partner William Jessop preferred the use of "edge rails" in 1789 where the wheels were flanged and, over time, it was realised that this combination worked better.
The earliest of these in general use were the so-called cast iron fishbelly rails from their shape. Rails made from cast iron were brittle and broke easily. They could only be made in short lengths which would soon become uneven. John Birkinshaw's 1820 patent, as rolling techniques improved, introduced wrought iron in longer lengths, replaced cast iron and contributed significantly to the explosive growth of railroads in the period 1825-40. The cross-section varied widely from one line to another, but were of three basic types as shown in the diagram. The parallel cross-section which developed in later years was referred to as Bullhead.
Meanwhile, in May 1831, the first flanged T rail (also called T-section) arrived in America from Britain and was laid into the Pennsylvania Railroad by Camden and Amboy Railroad. They were also used by Charles Vignoles in Britain.
The first steel rails were made in 1857 by Robert Forester Mushet, who laid them at Derby station in England. Steel is a much stronger material, which steadily replaced iron for use on railway rail and allowed much longer lengths of rails to be rolled.
The American Railway Engineering Association (AREA) and the American Society for Testing Materials (ASTM) specified carbon, manganese, silicon and phosphorus content for steel rails. Tensile strength increases with carbon content, while ductility decreases. AREA and ASTM specified 0.55 to 0.77 percent carbon in 70-to-90-pound-per-yard (34.7 to 44.6 kg/m) rail, 0.67 to 0.80 percent in rail weights from 90 to 120 lb/yd (44.6 to 59.5 kg/m), and 0.69 to 0.82 percent for heavier rails. Manganese increases strength and resistance to abrasion. AREA and ASTM specified 0.6 to 0.9 percent manganese in 70 to 90 pound rail and 0.7 to 1 percent in heavier rails. Silicon is preferentially oxidised by oxygen and is added to reduce the formation of weakening metal oxides in the rail rolling and casting procedures. AREA and ASTM specified 0.1 to 0.23 percent silicon. Phosphorus and sulfur are impurities causing brittle rail with reduced impact-resistance. AREA and ASTM specified maximum phosphorus concentration of 0.04 percent.
The use of welded rather than jointed track began in around the 1940s and had become widespread by the 1960s.
Histoire
A Milan ou dans les docks de Londres, l'utilisation de bandes de roulements, composées de deux files parallèles de dalles en pierres ou de madriers de bois, a été une alternative au pavage complet des chaussées pour diminuer la résistance au roulement des chariots. Au départ les bandes étaient suffisamment larges pour qu'on puisse y maintenir manuellement les véhicules. Pour pouvoir utiliser des bandes plus fines, d'abord des solives en bois puis des rails en acier, il a fallu trouver un moyen de guidage du chariot sur ces rails. Au début du chemin de fer, le système actuel à rail saillant (edge-rails) a été en concurrence avec une technologie de voie à ornières ou rail plat (tramroad ou plateway). Dans ce dernier système, le guide latéral qui permet de s'assurer que la roue reste en position sur le rail n'est pas situé sur la jante mais sur le côté du rail. Le rail plat, plus près du sol et donc plus stable, était moins onéreux à poser et on espérait pouvoir y faire circuler les chariots routiers. Il a été notamment utilisé dans les mines du pays de Galles, mais l'usage a montré qu'il était beaucoup plus sujet à l'encrassement par les dépôts de boue et son usage a été abandonné.
Types
Le rail moderne est généralement du type «Vignole» ; dans une section transversale, on distingue le patin qui s’appuie sur la traverse, le champignon qui constitue le chemin de roulement, et l’âme, filet vertical qui relie le champignon au patin. Sur les lignes importantes, la masse linéique standard du rail est de 60 kg/m.
Des rails à gorge (type «Broca») sont utilisés pour les voies encastrées dans des chaussées routières, notamment pour les installations industrielles et les lignes de tramway.
Le rail à « double champignon symétrique » avait été conçu pour permettre de retourner le rail usé et donc doubler sa durée de vie. Le défaut de ce système était que lorsque le rail était retourné, il était déjà abimé (poinçonnements dû à l'écrasement au niveau des berceaux). Ce principe a été abandonné. Des rails type « double champignon asymétrique » ont également été employés : un seul côté, de plus forte section, était utilisé pour le roulement. La simplification apportée par la fixation du rail type Vignole a amené à l'abandon de ce système.
---------------------------------------------
The rail profile is the cross sectional shape of a railway rail, perpendicular to the length of the rail.
Early rails were made of wood, cast iron or wrought iron. All modern rails are hot rolled steel of a specific cross sectional profile. Typically the cross section (profile) approximates to an I-beam but is asymmetric about a horizontal axis (however see grooved rail below). The head is profiled to resist wear and to give a good ride, the foot is profiled to suit the fixing system.
Unlike some other uses of iron and steel, railway rails are subject to very high stresses and have to be made of very high quality steel. It took many decades to improve the quality of the materials, including the change from iron to steel. Minor flaws in the steel that pose no problems in reinforcing rods for buildings can, however, lead to broken rails and dangerous derailments when used on railway tracks.
By and large, the heavier the rails and the rest of the trackwork, the heavier and faster the trains these tracks can carry.
The rails represent a substantial fraction of the cost of a railway line. Only a small number of rail sizes are made by steelworks at one time, so a railway must choose the nearest suitable size. Worn, heavy rail from a mainline is often reclaimed and downgraded for re-use on a branchline, siding or yard.
History
Early rails were used on horse drawn wagonways, originally with wooden rails, but from the 1760s using strap-iron rails, which consisted of thin strips of cast iron fixed onto wooden rails. These rails were too fragile to carry heavy loads, but because the initial construction cost was less, this method was sometimes used to quickly build an inexpensive rail line. Strap rails sometimes separated from the wooden base and speared into the floor of the carriages above, creating what was referred to as a "snake head". However, the long-term expense involved in frequent maintenance outweighed any savings.
These were superseded by cast iron rails that were flanged (i.e. 'L' shaped) and with the wagon wheels flat. An early proponent of this design was Benjamin Outram. His partner William Jessop preferred the use of "edge rails" in 1789 where the wheels were flanged and, over time, it was realised that this combination worked better.
The earliest of these in general use were the so-called cast iron fishbelly rails from their shape. Rails made from cast iron were brittle and broke easily. They could only be made in short lengths which would soon become uneven. John Birkinshaw's 1820 patent, as rolling techniques improved, introduced wrought iron in longer lengths, replaced cast iron and contributed significantly to the explosive growth of railroads in the period 1825-40. The cross-section varied widely from one line to another, but were of three basic types as shown in the diagram. The parallel cross-section which developed in later years was referred to as Bullhead.
Meanwhile, in May 1831, the first flanged T rail (also called T-section) arrived in America from Britain and was laid into the Pennsylvania Railroad by Camden and Amboy Railroad. They were also used by Charles Vignoles in Britain.
The first steel rails were made in 1857 by Robert Forester Mushet, who laid them at Derby station in England. Steel is a much stronger material, which steadily replaced iron for use on railway rail and allowed much longer lengths of rails to be rolled.
The American Railway Engineering Association (AREA) and the American Society for Testing Materials (ASTM) specified carbon, manganese, silicon and phosphorus content for steel rails. Tensile strength increases with carbon content, while ductility decreases. AREA and ASTM specified 0.55 to 0.77 percent carbon in 70-to-90-pound-per-yard (34.7 to 44.6 kg/m) rail, 0.67 to 0.80 percent in rail weights from 90 to 120 lb/yd (44.6 to 59.5 kg/m), and 0.69 to 0.82 percent for heavier rails. Manganese increases strength and resistance to abrasion. AREA and ASTM specified 0.6 to 0.9 percent manganese in 70 to 90 pound rail and 0.7 to 1 percent in heavier rails. Silicon is preferentially oxidised by oxygen and is added to reduce the formation of weakening metal oxides in the rail rolling and casting procedures. AREA and ASTM specified 0.1 to 0.23 percent silicon. Phosphorus and sulfur are impurities causing brittle rail with reduced impact-resistance. AREA and ASTM specified maximum phosphorus concentration of 0.04 percent.
The use of welded rather than jointed track began in around the 1940s and had become widespread by the 1960s.